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Overview And Structure

The Marsh McLennan Flood Risk Index provides a 
global overview of flood risk at the national level. 
Utilizing disaster risk assessment concepts as a 
foundation, the Index provides a comprehensive 
analysis of the threat posed by flooding across
countries by estimating scores for the hazard, 
exposure, and vulnerability components of flood risk:

• Hazard refers to the physical processes that may 
cause loss of life, injury or other health impacts, 
property damage, social and economic disruption, 
or environmental degradation through flooding.

• Exposure indicates the people, infrastructure, 
housing, production capacities and other tangible 
assets located in hazard-prone areas.

• Vulnerability refers to the conditions determined 
by physical, social, economic, and environmental 
factors or processes which increase the susceptibility 
of communities, assets, or systems to the impacts 
of hazards.

Hazard scores are presented for riverine (fluvial), 
coastal, and rainfall (pluvial) flooding. Scores for these 
dimensions were calculated resorting to 100-year 
return period hazard maps under different climate 
change scenarios (present day, +1.5 °C, +2 °C, and

+3.5 °C) obtained from projections of flood risk in 
2010, 2030, 2050, and 2080 respectively. Total hazard 
scores were calculated by averaging the scores for 
the three components of the hazard. Exposure and 
vulnerability scores were calculated for their human 
and economic components. Total exposure and 
vulnerability scores were estimated as the average
of the corresponding human and economic scores. 
Exposure scores were estimated under different 
climate change scenarios (present day, +1.5 °C, +2 °C, 
and +3.5 °C). Vulnerability scores were only estimated 
for present-day conditions.

The scores for hazard (total, riverine, coastal, rainfall), 
exposure (total, human, economic), and vulnerability 
(total, human, economic) range from 1 to 10, with 
higher values indicating higher risk.

Hazard, exposure, and vulnerability are shaped 
by several underlying drivers that can mitigate or 
exacerbate the impacts of flooding. Due to the unique 
set of factors that influence each component, the 
structure of the Index is meant to primarily support 
comparative analysis of countries within each 
indicator, rather than across.
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Selection Criteria

1 The World Bank. (n.d.). World Bank Official Boundaries. Retrieved July 28, 2021. The choice of this dataset does not imply any endorsement by 
Marsh McLennan concerning the legal status of any country or territory or the delimitation of frontiers or boundaries.

Index indicators were selected to provide a reliable 
and easy to understand snapshot of the components 
of flood risk in each country according to the 
following principles:

• Robustness Indicators are chosen from 
reputable sources with the most current 
information available.

• Parsimony A small number of indicators with high 
levels of explanatory power have been selected 
to preserve simplicity and avoid cross-indicator 
redundancy. Included indicators represent critical 
elements of flood risk based on underlying 
risk drivers.

• Reliability Selected datasets have high coverage 
and are obtained from reputable institutions.

Data Sources

The Index uses various data sets to estimate proxies 
for hazard, exposure, and vulnerability at the country 
level. The World Bank Official Boundaries1 data set 
was used to aggregate geospatial information and 
calculate country statistics.

The indicator scores were derived from publicly 
available data sources and are summarized in Exhibit 1. 
The layers and the country statistics presented in the 
Overlays section of the webtool were generated from 
the data sets listed in Exhibit 2.

https://datacatalog.worldbank.org/dataset/world-bank-official-boundaries
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Exhibit 1: Index components, indicators, and data sources

Index component Indicator Data sources

Hazard scores Riverine (fluvial)
hazard

100-year return period hazard maps from the World Resources Institute (WRI)’s 
Aqueduct Floods2 which incorporate information from 5 CMIP5 models (GFDL-
ESM2M, HadGEM2-es, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) under 
an RCP8.5 forcing scenario for different time horizons: 2010, 2030, 2050, 2080. 
Further details can be found in the WRI Aqueduct Floods methodology document.3

Coastal hazard 100-year return period hazard maps from WRI Aqueduct Floods4 which 
incorporate information from the Global Tide and Surge Reanalysis (GTSR) 
dataset and model future coastal subsidence. Further details can be found in 
the WRI Aqueduct Floods methodology document.5

Rainfall (pluvial)
hazard

100-year return period precipitation maps estimated from CMIP5 model 
simulations and ECMWF ERA-Interim6 data made available by the Climdex 
project7 ECA&D E-OBS,8 WMO CCI/WCRP/JCOMM ETCCDI HadEX3,9 and USGS/
CHC CHIRPS.10

Exposure scores Human exposure Global Human Settlement Layer (GHSL) 201511 from the European 
Commission’s Joint Research Center. Hazard maps from data sets listed in the 
“Hazard scores” section of this table.

Economic exposure Capital Stock data from the United Nations Office for Disaster Risk Reduction 
(UNDRR)’s Global Exposure Database GAR 2015.12 Hazard maps from data sets 
listed in the “Hazard scores” section of this table.

Vulnerability scores Human
vulnerability

Human Development Index from the United Nations Development Programme 
(UNDP) Human Development Data 2020.13 Non-life insurance premium volume to 
GDP data from the World Bank’s Global Financial Development Database 2019.14

Economic
vulnerability

Quality of infrastructure from the Global Competitiveness Index Historical 
Dataset (2017-2018) with underlying data from the World Economic Forum’s 
Executive Opinion survey (EOS).15 Non-life insurance premium volume to GDP 
data from the World Bank’s Global Financial Development Database 2019.16

Source: Marsh McLennan Advantage

2 Ward, P. J., Winsemius, H. C., Kuzma, S., Bierkens, M. F. P., Bouwman, A., Moel, H. D., Loaiza, A. D., Englhardt, J., Erkens, G., Gebremedhin, E. T., 
Iceland, C., Kooi, H., Ligtvoet, W., Muis, S., Scussolini, P., Sutanudjaja, E. H., Beek, R. V., Bemmel, B. V., Huijstee, J. V., Vatvani, D., Verlaan, M., 
Tiggeloven, T., Luo, T. (2020). Aqueduct Floods Methodology.

3 Ibid. 

4 Ibid.

5 Ibid.

6 Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, M., Fuentes, M., Kållberg, P. W., Kobayashi, S., Uppala, S., & Simmons, A. (2011).
The ERA-Interim archive Version 2.0. ECMWF.

7 University of New South Wales. (n.d.). Climdex. Retrieved April 20, 2022.

8 Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., & New, M. (2008). A European daily high-resolution gridded data set of 
surface temperature and precipitation for 1950-2006. Journal of Geophysical Research, 113(D20), D20119. https://doi.org/10.1029/2008JD010201

9 Dunn, R. J. H., Alexander, L. V., Donat, M. G., Zhang, X., Bador, M., Herold, N., Lippmann, T., Allan, R., Aguilar, E., Barry, A. A., Brunet, M., Caesar, 
J., Chagnaud, G., Cheng, V., Cinco, T., Durre, I., Guzman, R., Htay, T. M., Wan Ibadullah, W. M., … Bin Hj Yussof, M. N. (2020). Development of 
an Updated Global Land In Situ‐Based Data Set of Temperature and Precipitation Extremes: HadEX3. Journal of Geophysical Research: 
Atmospheres, 125(16). https://doi.org/10.1029/2019JD032263.

10 Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). 
The climate hazards infrared precipitation with stations — A new environmental record for monitoring extremes. Scientific Data, 2(1), 
150066. https://doi.org/10.1038/sdata.2015.66.

11 European Commission. References: GHS-POP. EU Science Hub. Retrieved July 22, 2021.

12 Bono, A. D., & Chatenoux, B. (2014). A Global Exposure Model for GAR 2015. UNEP/GRID-Geneva.

13 UNDP. Human Development Reports – Human Development Index. Retrieved March 30, 2022.

14 The World Bank. (2020). Global Financial Development Database. Retrieved March 30, 2022.

15 World Economic Forum. The Global Competitiveness Report 2017-2018. Retrieved 10 March 2021.

16 The World Bank. (2020). Global Financial Development Database. Retrieved March 30, 2022.

https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20
https://www.climdex.org/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2008JD010201
https://doi.org/10.1029/2019JD032263
https://doi.org/10.1038/sdata.2015.66
https://ec.europa.eu/jrc/en/global-human-settlement-layer/references
https://www.preventionweb.net/publication/global-exposure-model-gar-2015
http://hdr.undp.org/en/content/human-development-index-hdi
https://www.worldbank.org/en/publication/gfdr/data/global-financial-development-database#:~:text=The%20Global%20Financial%20Development%20Database,system%20characteristics%20for%20214%20economies.&text=It%20has%20been%20last%20updated,of%20financial%20institutions%20and%20markets
https://reports.weforum.org/global-competitiveness-index-2017-2018/preface/
https://www.worldbank.org/en/publication/gfdr/data/global-financial-development-database#:~:text=The%20Global%20Financial%20Development%20Database,system%20characteristics%20for%20214%20economies.&text=It%20has%20been%20last%20updated,of%20financial%20institutions%20and%20markets
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Score Calculation

22 The World Bank. (2022). The World By Income and Region. World Development Indicators. Retrieved March 30, 2022.

Scores for Hazard, Exposure, and Vulnerability are 
calculated at the country level. Global and country 
group averages are then calculated by aggregating 
information across countries. Group averages were 
calculated by classifying countries by income and 
geography using the World Bank's World by Income 
and Geography data set.22 The lists of countries 
included in the calculation of regional and income 
group averages are available in the data file made 
available on the Rethinking Flood landing page.

Hazard

Background
Hazard scores represent a measure of the potential 
threat of flooding, in terms of severity and likelihood, 
and are based on information on 100-year return 
period flooding.

The scores reflect information on the 
following components:

• Riverine flooding, caused by overflowing of rivers 
due to intense precipitation, ice jams, and melting 
of snow and ice.

Exhibit 2: Overlay components and data sources

Layer Data sources

Riverine hazard 100-year return period hazard maps from WRI Aqueduct Floods.

Coastal hazard 100-year return period hazard maps from WRI Aqueduct Floods.

Rainfall hazard 100-year return period precipitation maps estimated from the data 
sets listed in the “Hazard scores,” “Rainfall (pluvial) hazard” section in 
Exhibit 1. Only areas with extreme precipitation ≥200mm/day are shown.

Urban areas Surface covered by urban areas derived from FAO’s Global Land Cover 
(GLC-SHARE).17

Rural areas Surface covered by agriculture derived from FAO’s Global Land Cover 
(GLC-SHARE).18

Power plants WRI’s Global Power Plant Database.19

International ports and airports International Ports20 and International Airports21 databases from the 
World Bank’s Data Catalog.

Source: Marsh McLennan Advantage

17 Latham, J., Cumani, R., Rosati, I., & Bloise, M. (2014). Global land cover share — FAO. Food and Agricultural Organization of the United Nations. 
Retrieved March 30, 2022.

18 Ibid.

19 Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018). Global Power 
Plant Database. Published on Resource Watch and Google Earth Engine. Retrieved March 30, 2022.

20 The World Bank. (2022). Global - International Ports. Data Catalog. Retrieved March 30, 2022.

21 The World Bank. (2022). Global Airports: Locations of airports with international travel. Data Catalog. Retrieved March 30, 2022.

https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html#:~:text=The%20World%20Bank%20classifies%20economies,%2Dmiddle%2C%20and%20high%20income
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fao.org/uploads/media/glc-share-doc.pdf
http://resourcewatch.org/
https://earthengine.google.com/
https://datacatalog.worldbank.org/search/dataset/0038118/Global---International-Ports
https://datacatalog.worldbank.org/search/dataset/0038117
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• Coastal flooding, triggered by storm surges, 
extreme tidal events, and subsidence.

• Rainfall flooding, occurring when extreme 
precipitation leads to flash floods or surface 
water floods.

The 100-year return period riverine and coastal 
inundation maps were obtained from WRI’s Aqueduct 
Floods. Coastal inundation maps incorporate the 
effect of coastal subsidence. Further details can be 
found in the WRI Aqueduct Floods methodology 
document.23 The 100-year return period maps for 
rainfall flooding were calculated by performing an 
extreme value analysis of the annual maximum values 
of daily precipitation from multiple observational, 
reanalysis, and climate model data sets.

Calculation

Fluvial and coastal hazard scores
Step 1. The 100-year riverine and coastal inundation 
maps available in Aqueduct Floods for present-day 
conditions and for years 2030, 2050, 2080 under an 
RCP8.5 forcing were analyzed to calculate riverine 
and coastal hazard scores for the four scenarios in the 
Index. The 2030, 2050, and 2080 time horizons were 
assumed to correspond to +1.5 °C, +2 °C, and +3.5 °C 
warming levels.

Step 2. The area-weighted average value of flood depth 
for riverine flooding in each country was estimated for 
each warming level. The average riverine flood depth 
in each country for each warming level was mapped to 
a riverine hazard score (ranging from 1 to 10) using the 
deciles of the distribution of the 2080 average riverine 
flood depth values across countries.

23 Ward, P. J., Winsemius, H. C., Kuzma, S., Bierkens, M. F. P., Bouwman, A., Moel, H. D., Loaiza, A. D., Englhardt, J., Erkens, G., Gebremedhin,
E. T., Iceland, C., Kooi, H., Ligtvoet, W., Muis, S., Scussolini, P., Sutanudjaja, E. H., Beek, R. V., Bemmel, B. V., Huijstee, J. V., Vatvani, D., Verlaan, M. 
Tiggeloven, T., Luo, T. (2020). Aqueduct Floods Methodology.

24 University of New South Wales. (n.d.). Climdex. Retrieved April 20, 2022.

Step 3. A similar analysis was performed to calculate 
coastal scores. In this case, however, the area-weighted 
average values of coastal flood depth were estimated 
from a 30-km coastal buffer in each country. Excluding 
areas outside this buffer ensures comparability across 
countries with very different areas.

Rainfall hazard scores
Step 1. The present-day 100-year return period map 
for extreme rainfall was calculated by performing an 
extreme value analysis of the annual maximum values 
of daily precipitation in the 30-year period 1991–2020 
from multiple observational and reanalysis data sets 
with different geographical coverages: ECA&D E-OBS, 
WMO CCI/WCRP/JCOMM ETCCDI HadEX3, USGS/CHC 
CHIRPS, and ECMWF ERA-Interim. The best extreme 
rainfall estimate at each location was obtained by 
selecting the first available estimate from the data 
sets in the order of preference corresponding to their 
listing order above. Such estimates were then merged 
to generate a map with global coverage, and the area-
weighted average value of extreme rainfall in each 
country was calculated.

Step 2. A set of eight present-day 100-year return 
period maps for extreme rainfall was calculated from 
CMIP5 climate model simulations of annual maximum 
values of daily precipitation under historical forcing 
conditions. The CMIP5 model output was made 
available by the Climdex project.24 Seven of the 15 
models in the project were excluded from the analysis 
as they failed to represent global precipitation patterns 
under present-day conditions. The eight CMIP5 models 
used to calculate extreme rainfall values (from the 
last 30 years of each historical run) were bcc-csm1-1, 
CanESM2, CCSM4, CNRM-CM5, GFDL-CM3, HadGEM2-
ES, IPSL-CM5A-MR, and MRI-CGCM. The eight extreme 
rainfall maps were then averaged to produce a multi-
model estimate of extreme rainfall under present-
day conditions.

https://www.climdex.org/
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Step 3. The present-day 100-year return period map 
for extreme rainfall calculated from observations 
and reanalysis data in step 1 was divided by the 
multi-model extreme rainfall map for present-day 
conditions calculated in step 2. The resulting map of 
bias correction factors was used to rescale extreme 
rainfall values calculated from CMIP5 models under 
future warming scenarios (see step 4).

Step 4. The 100-year return period maps for extreme 
rainfall under future warming scenarios (+1.5 °C, 
+2 °C, and +3.5 °C) were calculated by performing 
an extreme value analysis of the annual maximum 
values of daily precipitation in the 30-year periods 
centered on 2030, 2050, and 2080 respectively, as 
simulated by the eight CMIP5 model simulations from 
the Climdex project. The eight extreme rainfall maps 
for each warming scenario were then averaged to 
produce a multi-model estimate. The multi-model 
averages were then rescaled by multiplying them by 
the bias correction factor map calculated in step 3. 
The area-weighted average value of extreme rainfall 
in each country for each warming scenario was 
then calculated.

Step 5. The area-weighted average value of extreme 
rainfall in each country for each warming level (as 
calculated in steps 1 and 4) was mapped to a rainfall 
hazard score (ranging from 1 to 10) using the deciles 
of the distribution of the 2080 extreme rainfall values 
across countries.

Step 6. Observational, reanalysis, and model 
simulation data had different resolutions. Performing 
the operations described in steps 1 to 4 required to 
reinterpolate data to the highest resolution among all 
data sets (E-OBS).

The total hazard score for each country was 
estimated by averaging the riverine, coastal, and 
rainfall hazard scores.

Limitations

The 2030, 2050, and 2080 time horizons were 
assumed to correspond to +1.5 °C, +2 °C, and
+3.5 °C warming levels based on CMIP5 multi-model 
global temperature projections, without accounting 
for different climate sensitivities across the 
CMIP5 ensemble.

Information on flood defenses was not included in 
the analysis.

Different resolutions of the data sets used to estimate 
rainfall flooding impacted their representation of 
pluvial extremes.

CMIP5 climate models may underestimate or 
overestimate rainfall extremes, and correction factors 
were applied to reduce such biases. Bias correction 
factors are assumed constant in time.

Exposure

Background
Exposure scores reflect information on the 
following components:

• Human exposure, an estimate of the percentage 
of population exposed to flooding in each country.

• Economic exposure, an estimate of the 
percentage of assets exposed to flooding in 
each country.

Exposure scores were calculated by intersecting 
population and asset distribution data with a layer 
obtained by combining the 100-year return period 
global inundation maps for riverine, coastal, and rainfall 
flooding for each warming scenario. No changes in time 
of the population and asset distributions were assumed 
when estimating exposure scores for future climate 
change scenarios, thus only incorporating information 
on changing hazard.
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Calculation

Step 1. An aggregated 100-year hazard map was 
created by combining the riverine, coastal, and 
rainfall inundation maps across each of the climate 
scenarios. For rainfall, extreme precipitation exceeding 
200mm/day was used as a threshold to identify at-risk 
areas. The 2030, 2050, and 2080 time horizons were 
assumed to correspond to +1.5 °C, +2 °C, and +3.5 °C 
warming levels.

Step 2. Asset value data from GAR was aggregated 
to a raster layer (1km x 1km) to provide a continuous 
representation of exposure.

Step 3. The global population (GHSL) and asset (GAR) 
layers were then clipped to the boundaries of the 
combined 100-year riverine, coastal, and rainfall 
inundation maps.

Step 4. A zonal statistics operator was applied to sum 
the values of population and assets in the inundated 
areas, thus calculating the total values of exposed 
population and assets in each country.

Step 5. The same zonal statistics operator was applied 
to calculate the total assets and population values in 
each country.

Step 6. The percentages of people and assets 
threatened by flooding were calculated for each 
country by dividing the numbers estimated in 
steps 4 and 5.

Step 7. Human and economic exposures scores for 
each country (ranging from 1 to 10) were estimated 
from the two percentage values by comparing them 
to the deciles of the corresponding distribution of 
percentages across countries in 2080. Scores for the 
four scenarios (present day, 2030, 2050, 2080) were all 
estimated using the deciles of the 2080 distributions.

Step 8. Total exposure scores were calculated by 
averaging the human and economic exposure scores.

Limitations

The 2030, 2050, and 2080 time horizons were 
assumed to correspond to +1.5 °C, +2 °C, and 
+3.5 °C warming levels based on CMIP5 multi-model 
global temperature projections, without accounting 
for different climate sensitivities across the 
CMIP5 ensemble.

Due to the difficulty in estimating flood exposure, 
there was a limited choice of available datasets. Data 
sources chosen to calculate exposure represent best 
available information that can be viewed as proxies 
for data that would otherwise be created or utilized 
exclusively for the purpose of flood risk modelling 
and assessment.

The choice of 200mm/day as a threshold to identify 
areas prone to rainfall flooding is arbitrary, and 
does not incorporate information on soil type, local 
topography, and other factors that may affect risk.
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Vulnerability

25 Details regarding the calculation of HDI can be found here.

Background

Vulnerability scores reflect socioeconomic 
susceptibility to flooding and are based on the 
following indicators:

• The Human Development Index (HDI), which 
captures three dimensions of human development 
that are highly relevant to human vulnerability 
(life expectancy, access to knowledge, and per 
capita income).25

• Quality of Overall Infrastructure, which 
estimates the quality of transport, energy and 
telephony systems and uses them as a proxy 
for economic vulnerability of infrastructure to 
flood events.

• Non-Life Insurance Premium Volume to GDP, 
which in the absence of global natural catastrophe 
insurance penetration data provides a view of the 
insurance environment and corresponding levels 
of protection within each country.

Calculation

Step 1. The Human Development Index (HDI, ranging 
from 0 to 1), the Quality of Overall Infrastructure 
(Q, between 1 and 7), and the Non-Life Insurance 
Premium Volume to GDP (I) were rescaled to the range 
0 to 100, with 0 indicating the highest performance in 
each dimension (HDI = 1, Q = 7, I = maximum among 
all countries) and 100 the lowest performance 
(HDI = 0, Q = 1, I = minimum among all countries). 
In the case of Q, data was first cleaned to account for 
countries with missing values. If no data was available 
for the most recent year of the dataset, data from 
previous years was included. No data before 2015 
was included.

Step 2. Human vulnerability values were calculated 
from HDI and Non-Life Insurance Premium Volume to 
GDP using the following formula:

Step 3. Economic vulnerability values were calculated 
from Quality of Overall Infrastructure and Non-
Life Insurance Premium Volume to GDP using the 
following formula:

Step 4. The resulting human and economic 
vulnerability values were then mapped to scores 
(ranging from 1 to 10) using the decile values of the 
two distributions.

Step 5. Total vulnerability scores were calculated by 
averaging human and economic vulnerability scores in 
each country.

Limitations

Vulnerability to flood risk can be represented by many 
indicators. The indicators included in the analysis 
do not explicitly factor in mitigation and adaptation 
measures and are not to be viewed as an exhaustive 
portrayal of vulnerability to flooding.

No information on climate scenarios was incorporated 
due to lack of reliable projections on the proxies used.

HDIRESCALED + 0.5 × IRESCALED

1.5

QRESCALED + 0.5 × IRESCALED

1.5

http://hdr.undp.org/sites/default/files/hdr2020_technical_notes.pdf
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Overlays Statistics Calculation

Background

The Overlays section of the Index shows the global 
inundation maps for riverine and coastal flooding 
(100-year return period maps from WRI’s Aqueduct 
Floods), and the rainfall inundation maps generated 
through from the process described in the Hazard 
Calculation section of this document. The Overlays 
section also presents data on the global distributions 
of urban areas, rural areas, and critical infrastructure 
assets, accompanied by key country-level statistics:

• Urban Areas, with the percentage of urban areas 
at risk of flooding.

• Rural Areas, with the percentage of rural areas at 
risk of flooding.

• Power Plants, with the percentage of power 
generation capacity at risk of flooding.

• Ports and Airports, with the percentages 
of international trade volumes (ports) and 
international seats (airports) at risk of flooding.

Calculation

Step 1. An aggregated 100-year hazard map was 
created by combining the riverine, coastal, and rainfall 
inundation maps across each of the climate scenarios. 
For rainfall, extreme precipitation exceeding 200mm/
day was used as a threshold to identify at-risk areas. 
These maps were intersected with World Bank 
boundary data and the data sets listed in steps 2 to 4 
to estimate the percentages of urban/rural areas and 
critical assets at risk.

Step 2. The total percentages of urban and rural areas 
exposed to flooding in each country were calculated 
from the FAO’s Global Land Cover SHARE (GLC-
SHARE) database.

Step 3. The percentage of power generation affected 
by flooding in each country was estimated from the 
WRI’s Global Powerplant Database.

Step 4. The percentages of trade volumes (for 
international ports) and seats (for international 
airports) at risk were estimated from the World Bank’s 
data catalog on international ports and airports.

Limitations

The 2030, 2050, and 2080 time horizons were 
assumed to correspond to +1.5 °C, +2 °C, and +3.5°C 
warming levels based on CMIP5 multi-model global 
temperature projections, without accounting 
for different climate sensitivities across the 
CMIP5 ensemble.

The data sets used for the analysis only offer an 
approximate representation of the distribution on 
the assets at risk at flooding. Data gaps and incorrect 
reporting of locations may lead to underestimation/
overestimation of the percentages affected.

The choice of 200mm/day as a threshold to identify 
areas at risk of rainfall flooding is arbitrary, and 
does not incorporate information on soil type, local 
topography, and other factors that may affect risk.
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